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ABSTRACT 

 

Images captured in underwater (UW) are often disturbed with 

several kind of degradation such as low visibility, non-

uniform color cast, haze, and blurriness. To date, most UW 

image restoration methods have ignored the effects of sensor 

blur and noise. Therefore, in this paper, we propose a novel 

three stage algorithm for visibility recovery in UW images by 

considering both sensor blur and noise. In the first stage, blind 

deconvolution is used for the estimation of an unknown point 

spread function (PSF). In the second stage, a new prior called 

weighted median channel prior (WMCP) is used for the 

estimation of scene depth and background light. In the third 

stage, a color balancing (CB) module is adopted to minimize 

the effect of non-uniform color cast. Experimental results 

manifest that the proposed algorithm is effective and has the 

character of visibility improvement, and color correction than 

previous state-of-the-art methods. 

 

Index Terms— Underwater image correction, visibility 

restoration, image dehazing, visibility enhancement. 

 

1. INTRODUCTION 

 

Underwater (UW) image restoration has received a great deal 

of interest in both consumer and computer vision applications 

used for the exploration of deep ocean in the search of natural 

resources, fauna monitoring and ocean mapping. However, 

due to poor lightening condition and limited capability of 

optical imaging device, capturing clear underwater images is 

a challenging task. In underwater, when images are captured 

by optical devices, light after reflecting from an object is 

scattered and absorbed, before it reaches the camera. This is 

due to the fact that water acts as efficient mirror and a sponge. 

In UW, the scattered rays cause blurring of image features, 

whereas, absorption hinder lights path to deeper water and 

limits the visibility. Poorer visibility, in turn affects the 

contrast and clarity of shots. Hence both the scattering and 

absorption properties of water play their role collectively, to 

degrade an image.  

     From past few decades, several attempts have been made 

to restore single underwater images. Initial work on UW 

image restoration are simply based on the contrast 

enhancement. The restoration process proposed by Bazeille 

et al. [1] used a series of independent filters to reduce the 

underwater perturbations. However, using too many filters on 

one image are often results in unnatural looking. Thus, a 

considerable research is directed toward the knowledge of the 

scattering phenomena and design of optical model. In recent 

years, significant progress has been directed towards 

restoration of single underwater images, using the traditional 

‘atmospheric scattering model’ [2]. In [3], Schechner et al. 

try to restore visibility in underwater images by capturing 

multiple images of the same scene through the use of a 

polarized camera.  In contrast, L.Chao et al. [4], J.Chiang et 

al. [5], and S. Serikawa et al. [6] used dark channel prior 

(DCP) [7] to remove the haze effects from single UW images. 

Furthermore, P.Drews et al. [8] used a modified version of 

DCP called UDCP, which consider the blue and green 

channel for estimating the transmission in UW. Similarly, 

Galdran et. al. [9] proposed a red channel variant of DCP to 

recover the lost contrast in underwater images. Carlevaris-

Bianco et al. [10] tackled the problem by employing a 

maximum intensity prior (MIP) which takes into account the 

intensity attenuation difference among the three color 

channels to estimate the scene-depth. Chong-Yi Li et al. [11] 

proposed a method based on the principle of minimum 

information loss and histogram distribution prior to dehaze 

UW images. Ancuti et al. [12] used the fusion principle to 

enhance the visual quality of UW images. Yan-Tsung Peng 

et al. [15] fused image blurriness and light absorption to 

restore UW images. Methods [2]-[15] can achieve good 

results, but in UW scenario, these strategies are not useful as 

there is a significant difference in physical process between 

UW imaging and outdoor imaging. Actually, water is many 

times denser than air, and is capable of holding matter in 

suspension, which makes it hard to identify and visualize 

things after few feet. Therefore, it is not convenient to use the 

‘atmospheric scattering model’ for the restoration of UW 

images. In general, all the previous established methods have 

ignore the problem of sensor blur and noise in UW imaging.  

     In this paper, we propose a novel approach that can take 

both sensor blur and noise into account, while restoring UW 

images. However, to the best of our knowledge, a visibility 

restoration algorithm considering both blur and noise has not 

appeared in the literature to date. The rest of this paper is as 

follows: In section II, a brief background of atmospheric 

scattering model is presented. In section III, we introduce our 

approach in detail. Finally, section IV present experimental 

results, and concluding remarks are provided in section V.    
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2. BACKGROUND 

 

2.1 Haze image formation model 

 

The atmospheric scattering model used for representing haze 

images in computer vision is expressed as [2] - [15]: 

 

            𝐼(𝑥) = 𝐽(𝑥)𝑡(𝑥) + 𝑎𝑖𝑟(1 − 𝑡(𝑥))                        (1) 

            𝑡(𝑥) = 𝑒−𝛽𝑑(𝑥)                                                (2) 

 

where, 𝑥 ∈ (𝑢, 𝑣) represent a pixel location,  𝐼(𝑥) is the 

intensity of observed hazy image, 𝐽(𝑥) is the real scene 

radiance, which is aimed to be recovered. 𝑡(𝑥) is the medium 

transmission, 𝑎𝑖𝑟  is the global background light, 𝛽 is the 

atmospheric attenuation coefficient, and 𝑑(𝑥) is the scene 

depth. On putting the value of  𝑡(𝑥) in Eq. (1) 

 

  𝐼(𝑥) =  𝐽(𝑥)𝑒−𝛽𝑑(𝑥) + 𝑎𝑖𝑟(1 − 𝑒−𝛽𝑑(𝑥))                  (3) 

 

In Eq. (3), 𝐽(𝑥)𝑒−𝛽𝑑(𝑥) is called ‘direct attenuation’ which 

exponentially reduce the scene radiance in proportional to the 

scene depth, and 𝑎𝑖𝑟(1 − 𝑒−𝛽𝑑(𝑥)) is called the ‘background-

light’ which fades the color and adds whiteness in the scene. 

Intuitively, the image received by the observer is the 

combination of the attenuated version of underlying scene 

radiance with an additive background-light. Since 𝐼(𝑥) is 

known, the ultimate goal of dehazing is to recover 𝐽(𝑥), as:  

 

                        𝐽(𝑥) =
𝐼(𝑥)−𝑎𝑖𝑟

𝑒−𝛽𝑑(𝑥) + 𝑎𝑖𝑟                                  (4) 

 

The restoration of scene radiance 𝐽(𝑥), is a highly ill-posed 

problem, because it requires us to recover 𝑎𝑖𝑟  and 𝑑(𝑥), from 

only a single input image 𝐼(𝑥). In literature, there are several 

methods for estimation of background-light and scene depth, 

but they all are based on haze imaging model under 

atmospheric imaging conditions. But, water is many times 

denser than air and capable of holding matter in suspension 

through which we have to take our underwater photographs. 

Therefore, it is not convenient to use the above described 

model for the restoration of UW images. 

 

3. PROPOSED METHODOLOGY 

 

In this paper, the restoration technique are oriented toward 

mathematically modeling the degradations in underwater, by 

considering both blur and noise into account. 

 

3.1 Haze image formation in turbid medium  

 

By taking into account, both the sensor blur and noise the UW 

image formation model can be expressed as: 

 

𝐺(𝑥) = [𝐽(𝑥)𝑡(𝑥) + 𝑎𝑖𝑟(1 − 𝑡(𝑥))] ⊗ ℎ(𝑥) + 𝑛(𝑥)      (5) 

𝐺(𝑥) = [𝐼(𝑥)] ⊗ ℎ(𝑥) + 𝑛(𝑥)                                         (6) 

where, 𝐺(𝑥) is an observed UW image, ℎ(𝑥) is a point spread 

function (PSF), which models the blurring of UW images, 

𝑛(𝑥) is an additive noise. The other parameters are the same 

as Eq. (1). Our goal is to recover the scene radiance 𝐽(𝑥) from 

𝐺(𝑥), but the success of restoring 𝐽(𝑥) depends upon precise 

estimation of ℎ(𝑥). In UW, blur are caused by several reasons 

such as relative motion between camera and the object [16], 

improper focusing [17], and water turbidity [18]. Since in 

UW, exact source of blurring is unknown, therefore, to 

overcome this problem, we proposed a new model, which has 

the capability of handling underwater degradations. Based on 

this model, a three-stage algorithm is proposed to restore 

visibility of UW images. The flowchart of the proposed 

methodology is shown in Fig.1. In the first stage, blind 

deconvolution algorithm [19] proposed by Krishnan et al. is 

used for the estimation of unknown PSF. In the second stage, 

a new prior called weighted median channel prior (WMCP) 

is used for the estimation of 𝑎𝑖𝑟  and 𝑑(𝑥). In the third stage, 

a color balancing (CB) module is adopted to minimize the 

effect of color cast in UW mages. 

 

3.2 Blind deconvolution algorithm  

 

In this paper, we use a normalized sparsity measure to 

deconvolute an UW image. For the given UW image 𝐺(𝑥), 

we use a set of discrete filters ∇𝑚= [1, −1] and ∇𝑛= [1, −1]𝑇 

to generate a high frequency image 𝑧(𝑥) = [∇𝑚𝐺,  ∇𝑛𝐺]1. 

The cost function for spatially-invariant blurring is given by:- 

 

             min
𝑚,ℎ

 𝜆‖𝑚 ⊗ ℎ − 𝑧‖2
2 +

‖𝑚‖1

‖𝑚‖2
+ 𝜓‖ℎ‖1                (7) 

 

where, 𝑚 is an unknown sharp image in the high frequency 

space, ℎ is the unknown PSF subject to the constraint that ℎ ≥
0, ∑ ℎ𝑖 = 1𝑖  (where, ℎ𝑖 are individual element), 𝜆 and 𝜓 are 

the scalar weights which control the relative strength of the 

PSF and image regularization terms. The solution of Eq. (7) 

can be found by alternatively solving:  

 

                      min
𝑚

 𝜆‖𝑚 ⊗ ℎ − 𝑧‖2
2 +

‖𝑚‖1

‖𝑚‖2
                   (8) 

 

and 

 

                       min
ℎ

 𝜆‖𝑚 ⊗ ℎ − 𝑧‖2
2 + 𝜓‖ℎ‖1              (9) 

 

where, Eq. (8) and Eq. (9) can be solved efficiently by 

iterative shrinkage thresholding algorithm (ISTA) [20] and 

iterative re-weighted least squares algorithm (IRLS) [21], 

respectively. Once the PSF, ℎ(𝑥) for the finest level has been 

estimated, we can recover 𝐼(𝑥) from 𝐺(𝑥) by solving:- 

 

   min
 ℎ

 𝜆‖𝐼 ⊗ ℎ − 𝐺‖2
2 + ‖∇𝑚𝐺‖𝛼 + ‖∇𝑛𝐺‖𝛼        (10) 

 

where, 𝜆 = 3000, 𝛼 = 0.8, ∇𝑚= [1, −1], ∇𝑛= [1, −1]𝑇 for 

all results.  
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Figure 1. A three-stage flowchart of the proposed method. 

 

3.3 Weighted Median Channel Prior (WMCP) 

 

A scene-depth estimation based on the utilization of weighted 

median operator is used in the proposed method. The 

proposed WMCP is different from conventional unweighted 

techniques [4]-[9], which treat each neighbor pixel equally. 

The motivation behind choosing weighted technique is that it 

has the edge preserving capability which helps to retain most 

of the edge information while estimating scene-depth. In 

WMCP, first for each pixel, the lowest value from all color 

channels is chosen. Then, the median pixel value is chosen 

within the neighborhoods (Ω) after associating it with a 

weight function 𝑤(𝑥, 𝑦). Mathematically, the weighted 

median channel prior (WMCP) for an input image 𝐼(𝑥) can 

be expressed as: 

 

𝑑(𝑥) = med
𝑥𝜖𝛺(𝑢,𝑣)

(𝑤(𝑥, 𝑦) × 𝑚𝑖𝑛
𝑐∈(r,g,b)

(𝐼𝑐(𝑥)))        (11) 

 

where, 𝛺(𝑢, 𝑣) represent an image local-patch, 𝑚𝑖𝑛 is a 

minimum filter, 𝑚𝑒𝑑 is a median filter, and 𝑤(𝑥, 𝑦) are the 

weights between the color-vectors of the neighboring pixels:  

 

𝑤(𝑥, 𝑦) = 𝑒−‖𝐼(𝑥)−𝐼(𝑦)‖2/2𝜎2
                         (12) 

 

where, 𝜎2  represents the variance of weights in a patch size 
(Ω).  

3.4 Estimation of background-light (𝒂𝒊𝒓) 

 

Generally, in an UW image, the influence of background-

light is higher in the region of deeper depth, and lower in the 

region of shallower depth. Since the background-light 

contribution increase along with the increase in scene-depth, 

we can estimate (𝑎𝑖𝑟) by considering the pixel intensity of 

deepest region in the depth map by using: 

 

  𝑎𝑖𝑟 =
𝐼𝐶(𝑥)

|𝑅|
{𝑎𝑟𝑔𝑚𝑎𝑥

𝑥∈𝑅0.1%
(𝑑(𝑥))} , 𝑐 ∈ (r,g,b)            (13) 

 

Where, 𝑅 is the deepest region in 𝑑(𝑥) and 𝑅0.1% be the set 

of position of those pixels in 𝑑(𝑥). Then, among these pixels, 

the pixel corresponding to highest intensity in the input image 

𝐼(𝑥) are chosen to provide the estimate of (𝑎𝑖𝑟). 
 

3.5 CB Module 

 

UW images usually exhibit serious color change problems 

due to water’s greatest absorption to light. In UW, colors 

associated to different wavelength have different attenuation 

rates (red channel loses its intensity fastest, while the green 

and blue keep their intensity longer) thus resulting in serious 

color cast. To solve this problem, we make use of gray world 

assumption [22] to determine whether or not the average 

intensity of the each color channel are equal. The average 

intensities of the red, green and blue channels are given by:  

 

𝑎𝑣𝑔𝑐 =
∑ ∑ 𝐼𝑐(𝑥)𝑁

𝑣=1
𝑀
𝑢=1

(𝑀×𝑁)
,    for  𝑐 ∈ {𝑟, 𝑔, 𝑏}           (14) 

 

Where, (𝑀 × 𝑁) denote the size of the input image. The 

average intensity for each color channel 𝑎𝑣𝑔𝑐  is then used to 

calculate the color difference value, 𝑐𝑑𝑣𝐶(𝑥) as: 

 

𝑐𝑑𝑣𝐶(𝑥) = 𝑎𝑣𝑔𝑟 − 𝑎𝑣𝑔𝑐 ,    for  𝑐 ∈ {𝑟, 𝑔, 𝑏}      (15) 

 

Eq. (15) provide an estimate of illumination by computing the 

mean of each color channel of the input image.    

 

3.6 Image recovery  

 

Once the depth-map of the scene has been obtained, we can 

obtain the transmission-map easily according to Eq. (2) by 

using 𝛽 = 0.7. Finally, the scene radiance 𝐽(𝑥) is given by: 

 

𝐽𝑐(𝑥) =
𝐼𝑐(𝑥)−(𝑎𝑖𝑟

𝑐 −𝑐𝑑𝑣𝑐(𝑥))

 min{max{𝑡(𝑥),0.1},0.9}
+ (𝑎𝑖𝑟

𝑐 − 𝑐𝑑𝑣𝑐(𝑥))         (16) 

 

Where, 𝑐𝑑𝑣𝑐(𝑥) denotes the color difference for each color 

channel. In other words, the offset for each channel caused by 

water is subtracted before the recovery of scene radiance. For 

avoiding instability, we also restrict the value of the 

transmission-map 𝑡(𝑥) between 0.1 and 0.9. 
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4. EVALUATION AND RESULT 

 

In this paper, all experimental images are processed by 

MATLAB R2017b on a PC with Intel(R) Core(TM) i5-

4260U CPU@ 1.40GHZ, 4.00GB RAM.  The parameters 𝜆, 

𝛼, ∇𝑚 ∇𝑛, 𝛽, and 𝛺 are fixed as 3000, 0.8, [1, −1], 
[1, −1]𝑇 , 0.7 and 15 respectively, in our experiment.   

 

Figure 2. shows our restoration result for few color distorted, 

blurry, under-exposed UW images. As we can observe, the 

restoration result produced by our approach has the character 

of detailed improvement by blur reduction, color correction, 

and lightening dark regions.  

 

(a) 

   

(b) 

   

Figure 2. Our restoration result. (a) Real UW images synthesized 

with defocus blur [16], motion blur [17] and turbulence blur [18], 

respectively. (b) Our method. (Best viewed on high-resolution 

display with zoom-in.) 

(a) 

   

(b) 

   

(c) 

   

(d) 

   

(e) 

   

Figure 3. Qualitative comparison with other state-of-the-art 

methods.  (a) Real-UW images (b) WCID method [5] (c) MIL-HDP 

method [11] (d) Ancuti method [12] (e) our proposed method. (Best 

viewed on high-resolution display with zoom-in.) 

Figure 3. shows the qualitative comparison of proposed 

method with other state-of-art methods including WCID [5], 

MIL-HDP [11] and Ancuti [12]. It is observed that the 

restored images in Fig. 3(e) has more vivid colors, sharpness 

and contrast than the original images. The advantage of 

proposed approach is especially apparent in the dark and 

blurry regions. While, in these regions the result of WCID 

[5], MIL-HDP [11], and Ancuti [12] are dark, and fuzzy.  

Table 1. RESTORATION EFFICACY OF THE COMPARED METHODS 

OBTAINED VIA 𝑼𝑰𝑪𝑴, 𝑼𝑰𝑺𝑴, 𝑼𝑰𝑪𝒐𝒏𝑴 & 𝑼𝑰𝑸𝑴 

Image Metric 
WCID 

[5] 

MIL-HDP 

[11] 

Ancuti 

[12] 
Ours 

Diver 

𝑈𝐼𝐶𝑀 

𝑈𝐼𝑆𝑀 

𝑈𝐼𝐶𝑜𝑛𝑀 

𝑈𝐼𝑄𝑀 

-97.8201 

6.2180 
0.3161 

0.2078 

-53.5234 

6.5442 
0.5970 

2.5576 

-13.8934 

6.7779 
0.7860 

4.4199 

-0.0459 

6.8744 

0.6610 

4.3920 

Fish1 

𝑈𝐼𝐶𝑀 

𝑈𝐼𝑆𝑀 

𝑈𝐼𝐶𝑜𝑛𝑀 

𝑈𝐼𝑄𝑀 

-1.0193 

7.2232 

0.7572 
4.8115 

-7.1973 

7.1903 

0.8175 
4.8431 

-1.6485 

7.2260 

0.6169 
4.2930 

-1.4933 

7.1401 

0.7877 

4.8826 

Fish2 

𝑈𝐼𝐶𝑀 

𝑈𝐼𝑆𝑀 

𝑈𝐼𝐶𝑜𝑛𝑀 

𝑈𝐼𝑄𝑀 

-6.8803 

6.1751 

0.6485 
3.9481 

-23.5528 

7.0106 

0.7729 
4.1694 

-5.4640 

7.5245 

0.7954 

4.9117 

-7.7628 

7.0990 

0.7082 
4.4096 

 

To quantitatively evaluate the restoration efficacy of each 

method, we adopted underwater image quality measures 
(𝑈𝐼𝑄𝑀), namely, the underwater image colorfulness 

measure (𝑈𝐼𝐶𝑀), the underwater image sharpness measure 

(𝑈𝐼𝑆𝑀), and the underwater image contrast measure 
(𝑈𝐼𝐶𝑜𝑛𝑀) [23]. Specifically, the 𝑈𝐼𝐶𝑀 measures the image  

colorfulness, 𝑈𝐼𝑆𝑀 is the attribute related to the preservation 

of fine detail and edges, 𝑈𝐼𝐶𝑜𝑛𝑀 measure the image  

contrast. The 𝑈𝐼𝑄𝑀 measure the overall image quality by 

collectively using 𝑈𝐼𝐶𝑀, 𝑈𝐼𝑆𝑀, and 𝑈𝐼𝐶𝑜𝑛𝑀. Generally a 

higher value of 𝑈𝐼𝑄𝑀 corresponds to an image with better 

quality. The restoration results are summarizes in Table 1. 

According to this table, the visual appeal of proposed method 

is significant and unveil great details. 

 

5. CONCLUSION 

 

In this paper, we refine the atmospheric scattering model and 

propose a new imaging model, for underwater images by 

taking both sensor blur and noise into account. Based on this 

new model, a three-stage algorithm is proposed to restore 

visibility in UW images. In the first stage, blind 

deconvolution algorithm is used for the estimation of 

unknown PSF. In the second stage, a new prior called 

weighted median channel prior (WMCP) is used for the 

estimation of scene depth and background light. In the third 

stage, a color balancing (CB) module is adopted to minimize 

the effect of non-uniform color cast. Experimental results on 

a variety of underwater images manifest that the proposed 

algorithm is effective, based on both the visual effect and 

quantitative assessment. 
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